Ix: the library

22nd June 2002

Contents

1

Introduction 3

11
1.2

Anamingofparts e e e e e e 4
Partsstill needed e e 4

Data structures overview 4

2.1
2.2
2.3
2.4
2.5
2.6

Thelexical list. e 4
Markersand counters e e e e e
COMMENES o e e e e e
Theindex e e e e

Roots and forms ofwords
Classesand categoriesS i i i i e e e e e e 6

Libraries and files 6

Ix Library functions and macros 6

4.1

4.2
4.3

4.4

4.5

Objectandflagreferencing e 6
4.1.1 Objectparts o o 7
4.1.2 Lexicalitemtypesandflags 7
4.1.3 Indexitemitypes e 7
Loading and unloadingtext e 8
Basic list traversal functions 8
4.3.1 “RaW’ItEMS e 8
432 “Raw’itemsinrange e 9
4.3.3 GOtoitem e 9
4.3.4 Lexicalitems (Words) 9
4.3.5 Gotolexicalitem 9
4.3.6 Flagged lexicalitems e 9
4.3.7 Non-stopped lexical items (noomitflagset) 10
4.3.8 Non-stopped items with otherflagsset. 10
Basic index traversal functions 10
4.4.1 Non-stoppedwordsintheindex, 10
4.4.2 Thefirst and following occurences of wordsinatext 10
4.4.3 Indexnodesthatarerootforms 11
444 Anyindexnode 11
Higher level listand index traversal, 11

451 Flagvalues 12

452 Listitems e e 13
453 Indexitems e e 13
4.5.4 Firstand following occurencesofwords, 13
455 Flaggeditems 13
456 Gotoitem 13
4.6 Omittingwords (Stop lists) 14
4.7 Settingandclearingflags e 14
4.7.1 Setting and clearing flags for words and listsofwords 14
4.7.2 Providing an external function to selectand changeflags 14
4.7.3 Renumbering e 14
4.8 Rootsandformsofwords. 14
4.8.1 Loadingand printingrootsandforms, 14
4.8.2 Adding and deletingrootsandforms o 14
4.8.3 Low-level finding and dereferencingrootsandforms 15
4.8.4 Higher-level finding and dereferencing rootsandforms 16
4.9 Classification schemes and categories e 17
4.9.1 Binding classes and lexicalindexes, 18
4.9.2 Class and category searchingandretrieval 18
4.9.3 Loading and dumping (printing) categories 20
4.10 Gathering Context for Lexical ltems e 21
4.10.1 Contextexample e 23
4.11 Formatting and printingitems L 23
4.11.1 Includefiles e 24
4.11.2 FIags . . . o o 24
4.11.3 Flagtestingmacros e e e e e 24
4.11.4 Lineinformation 24
4.11.5 Line initialization and reinitialization L. 25
4.11.6 Returnformattedlinesanditems L 25
4.11.7 Lineinformationforitems 25
412 RANGES o o e 26
4.12.1 Nameofcurrentrange o i i i i i e e e e 26
4.12.2 MappingrangesS v v v i i e e e e e e e e e e e e e e 26
4.12.3 AdAINGTanges o i e 26
4.12.4 Deletingranges e e e e e e 27
4.12.5 RaNge eXpresSSioNS v i i i e e e 27
4.12.6 Rangesetsetupandteardown e 27
4.12.7 Findingrange Sets 28
4.12.8 Walkingthroughrangesets. e 28
4129 Utility o e e 28
4.13 COUNLEIS o o e e e e e e e 28
4.13.1 Defineanewcounter 28
4.13.2 Findacounterbyname e e e e 29
4.13.3 Gotocounterbyvalue 29
4.13.4 Walkthroughcounters 29
4.13.5 Initialise and teardown the list counterstable 29
4.13.6 Makerange elementfromcounterpair 29
4.14 Opening and closing files, pipes, and linked lists 29
4.15 Stream-like Behaviour for Lexical Lists 30

4.15.1 Open,close, seek,set e 30

4.15.2 Getcharacter,getstring e e 30
4.15.3 Getcomponents e e e e e 31
4.16 Errorcodes and messages o i i e e e e e e e 32
5 General Data Structures 33
5.1 Bufferlistfunctions e 33
5.1.1 Findinganexistinglist 33
5.1.2 Creatinganewlist 33
5.1.3 Freeinglistsandlistcontents 33
5.1.4 Addingitemstoalist. 33
5.1.5 Freeingasingleitem 34
5.1.6 Returning current cursor position e e 34
5.1.7 Walkingthelist 34
5.1.8 Drainingalist(stackand FIFO) 34
5.1.9 Sorting lists 35
5.2 Hashtables e 35
5.2.1 Quickexample 35
5.2.2 Creatingahashtable o 35
5.2.3 Freeingahashtable 36
5.2.4 Insertingintoahashtable 36
5.2.5 Deletingfromahashtable, 36
5.2.6 Lookingupakeyinahashtable 36
5.2.7 Walkthrough the contentsofahashtable 37
5.2.8 Hashstatisticsandcontents 37
5.3 2-3Treefunctions e 37
5.3.1 Creatingandaddingtoatree 37
5.3.2 Deletingatree e e 38
5.3.3 Searchingatree. 38
5.3.4 Traversingatree e e e 38
6 Ultility Functions 38
6.1 Ultility utility functions e 38
6.2 10functions e e 40
6.3 Stdio-like functions for linked lists L 42
6.4 Errorfunctions e 43
6.5 AsCiigraphs e e 43

1 Introduction

Lx is a library for building tools to do lexical analyses of text. And in particular, tools that can do real time,
interactive exploration of texts.

Some of the tools easily available at the time Ix was first conceived did things such as collocational analysis,
but required that the text be preprocessed to prepare it. An initial goal for Ix was to be able to do this upon text
load, and then extend this to do collocational analysis of sets (classification schemes) of words.

A further, and perhaps the next major goal, is to have the interface to the data structures be a scripting
language that can be used to construct ad-hoc queries and analyses on the fly.

1.1 A naming of parts

Lx is also called Ix2, and is the second run at it after a hiatus of some time and the deletion of most parts of the
original Ix.

Lxt is a test program and semi-useful tool built on the Ix library. It can do a number of things, including run
simple batch scripts; but may be considered user unfriendly.

Moth is a hypothetical future analysis program built on the Ix library.

This is the documentation for Ix, the library.
1.2 Parts still needed

Lx (and Ixt) needs several major things to be truly useful:
e Unicode and locale support for character sets other than ASCII.
e Better error and exception handling.

e A scripting language. The interface to the library should be more easily programmed than by writing C
modules. Any number of useful things could be done as quick scripts.

Nevertheless, Ix and Ixt in their current form can do a few interesting and useful things.
This document needs:

e More and better examples.

e Better coverage of error conditions and results for each function.

2 Data structures overview

An understanding of the data structures used by Ix is necessary in order to make use of it.

2.1 The lexical list

A text file is parsed into words and loaded into memory as a lexical list (called a IxLexlist). Each word is stored
as node, with pointers to the next and previous words, as well as a pointer to the next occurence in the text of the
same word. As well, punctuation and formatting is stored in the list, and in fact it is trivial to have Ix print out
the text exactly as it was input.

An application may have multiple texts loaded at a time, and there is some support for tracking them all as a
linked list of loaded texts.

2.2 Markers and counters

It is possible to embed markers and counters in the text, and Ix will track and use them.

e A marker has a type and defines a range of text that extends until the next marker of the same type. For
example, a play may have markers of a type "speaker", which all the characters are members of, and which
are used to separate roles.

¢ A counter has a name and a value. Each occurence of the counter in the text increments the value. Counters
can be used to mark verses or lines (although there is an implicit, automatic counter for new-lines).

Ranges and counters are compiled as the text is loaded. A range is defined so:

<CORDELIA=speaker>

And then referenced in the text as:
<CORDELIA>

Or defined and referenced in one step as
<CORDELIA:speaker>

A counter is defined so:
<1=#>

And then referenced in the text as:
<1>

Or defined and referenced in one step as:
<l:#>

Counters and markers must be defined either before or at the first time they are referenced. An undefined marker
or counter will generate a warning from the compiler.

2.3 Comments

By convention, items in square brackets "[]* are comments, are stored, but are not parsed into lexical items (or
markers or counters).

2.4 The index

When the list is loaded, an index of the words it contains is constructed. The index only contains words (lexical
items) and does not contain markers, counters, or objects in the list that contain punctuation, etc.

An entry in the index points to the first occurence of the word in the text, all other occurences can be found
by following the chain of pointers to the next occurence of the word.

2.5 Roots and forms of words

The index into the lexical list supports mapping the forms of a word to a root word. The mapping is performed
by running a table of roots and forms against the index after the text is loaded. The table may contain a much
larger vocabulary than the loaded text does: anything not in the text will be ignored. More than one table can be
run against a text. So it is possible to run a comprehensive table against any text, and then run a smaller more
specialized one (for example, taking into account place and character names).

The scheme is meant to be used for one-to-many mappings, specifically roots and forms of words. But there
is a great deal of flexibility in how tables are constructed, and the creator of root and form tables may be as
precise as to differentiate between "refer" and the noun "referer", or loose enough to include "reference", or even
to group words that have roots cognate across languages. Therefore some care and consistency is required when
setting up tables.

2.6 Classes and categories

A classification scheme ("class” for short) can also be applied to a text. This is much more flexible than the root
and forms above. Words are mapped to categories. Words can belong to multiple categories, and categories can
contain sub-categories. A class or categories table is a table much like a roots and forms table, but is loaded into
memory as an independent, named object. A class is then "bound" to a lexical list: its members are matched to
existing words in the lexical list, and the lexical index entry for a word is also set to point back to the word’s
categories in the class.

Once loaded and bound to a text, operations can then be performed on categories of words; say, for example,
the frequency of colour words in a text.

A classification scheme may be entirely arbitrary, mapping forms of words (singular/plural, present/past,
noun/verb etc), themes, root language (Latin, French, Danish, etc.), or whatever else.

More than one class may be loaded at a time, but only one may be bound to a particular text at a time.

3 Libraries and files

All Ix data structures are defined in lib/Ix_lex.h, along with all the routines that manipulate them. The core library
is liblex.a. Other libraries supply data structure support and utility functions. (These may (should) coelesce as
they are already all quite non-optional.)

Library Header files Description
liblex.a 1x_lex.h Ix data structures and functions
liblist.a blist.h hash.h tree.h general data structures
libutils.a utils.h small utility functions
liberror.a error.h error message handling
libio.a io.h I/O abstraction

4 Ix Library functions and macros

There are probably more functions here than are needed; and a number needed that are missing. There are three
directions for Ix development:

1. Adding new functions as the need is discovered in the writing of analysis tools;
2. Streamlining and abstracting functions as better or higher-level ways are discovered;

3. Deleting functions that are not used, or are superceded.

Number 3 happens much less than it should. But numbers 1 and 2 still have a long ways to go.

For the most part what is documented here is the interface presented to the application. A number of modules
have private (static) functions that are not referenced here. A big example is many of the components used for
data structure construction on text load, where even functions that are exposed aren’t really for direct application
use.

4.1 Object and flag referencing

These are functions and macros (macros, for the most) that return information about the items in the text lexical
list, or in the list index. The purpose is to provide comfortable mnemonics, while allowing for transparent changes
to the underlying data structures at some future date.

4.1.1 Object parts

char *1x_token(lxLexitem *item);

int I1x_inum(lxLexitem *item);

int 1x_num(lxLexitem *item);

char *1x_indextoken (1lxIndexnode *11i);

These macros return parts of items. Ix_token() returns the character string for the list item. Ix_inum() and
Ix_num() return the hard and soft item numbers respectivelynd Ix_indextoken() returns the character string
for the (first occurence of) the word in the text.

A note about the values of counters: the value of a counter is stored in its soft number (num). So having
picked out a paragraph countéx)(with Ix_iscounter() below, its counter name is returned by Ix_token(lx), and
its value by Ix_num(Ix):

if (lx_iscounter (1lx))
printf ("counter \"%$s\" = %d\n", 1x_token(lx), lx_num(lx));

4.1.2 Lexical item types and flags

int 1x_islex(lxLexitem *item);

int 1x_ispunct (lxLexitem *item);
int 1x_ismarker (lxLexitem *item);
int 1x_iscounter (1lxLexitem *item);
int 1x_isrange(lxLexitem *item);
int 1x_iscomment (1xLexitem *item);
int lx_isomit (1xLexitem *item);

int 1x_inrange (1xLexitem *item);
int 1lx_islinefeed(lxLexitem *item);

These macros return 0 or 1 if the corresponding flag bit is set in the item. They should be pretty self-evident. A
line-feed forms a special type of counter whose name is the line-feed character, and whose num is the number of
linefeeds seen since the beginning of the text.

4.1.3 Index item types

int 1xf isrootintext (1xIndexnode *11i)

int 1xf_isrootnotintext (1xIndexnode *1i)
int 1xf_isroot (lxIndexnode *1i);

int 1xf_isassignedform(lxIndexnode *1i);
int 1xf_isunassignedform(lxIndexnode *1i)
int 1xf isform(lxIndexnode *11i)

int 1xf_isorphan(lxIndexnode *1i);

These macros return 0 or 1 depending on the type of word form the index node is. Again, these should be pretty
self-evident, except possibly for orphans. Orphans are nodes that were roots that weren't in the text, but the
mapping has since been deleted. As a node was created in the tree, and since we don’t (yet) support deletion of
single nodes in the index tree, these items are orphaned. They will be ignored by routines that aren’t specifically
looking for them.

1The hard number is the absolute, unchanging position of the item in the text list. The soft number counts only lexical, non-stopped,
items. The soft number may also be used for other things, such as counters, where because the item is not a lexical item, it will never
be used as an item number by Ix routines.

4.2 Loading and unloading text

int 1x_loadnewlist (1xText *text, char *name, IO *io);

Create the new listameattached to the text lisextand load it from the already opened i@ See ioopen().
IxLexlist *1x_newlexlist (char *name);

Create a new lexical list. (If not managing more than one list, you can then use Ix_loadlist() below to load.)
int 1x_loadlistfromio (lxLexlist *list, IO *io);

Load the listlist from the opened I1Go.
int lx_unloadlistfortext (1xText *text, char *name);

Unload the lishame(attached to text). This frees all data structures and memory associated with them.
int 1lx_unloadlist (1xLexlist *1list);

The input parser can be selected by setting the function pointer Ix_readtoken to an appropriate function. By
default it is set to Ix_default_readtoken() which is a plain parser and does not do markers or counters. The
marker and counter parser can be selected by setting in the applfcation

1x_readtoken = 1x_marker_readtoken;

4.3 Basic list traversal functions

Basic list and index traversal functions. Most commonly used in for(;;) loops. The first functions return items of
any type, functions further down the list are more discriminating and return objects that match various criteria.

They are all functions, not macros, so that pointers to them can be set and passed by other layers and callers
(see the higher-level traversal functions below these in section 4.5 on page 11).

431 “Raw”items

IxLexitem *1x_firstitem(lxLexlist *1list)
IxLexitem *1x_lastitem(lxLexlist *1list);
IxLexitem *1x_nextitem(lxLexitem *item);
IxLexitem *1x_previtem(lxLexitem *item);

Returns the appropriate items. Items are raw items: that is the item is returned whether it is a word, a comment,
a marker, etc.

IxLexitem *1x;

for (1x = 1x_firstitem(list); 1lx; 1lx = lx_nextitem(lx)) {
printf ("%$s", 1x_token(lx));

}

2Ix_marker_readtoken() should change to be the default!

4.3.2 “Raw’ items in range

1xLexitem *1x_firstrngitem(lxLexlist *list);
IxLexitem *1x_lastrngitem(lxLexlist *list);
IxLexitem *1x_nextrngitem(lxLexitem *item);
1xLexitem *1x_prevrngitem(lxLexitem *item);

Returns the appropriate in-range items. Items are raw items: that is the item is returned whether it is a word, a
comment, marker, etc. The only consideration is whether it falls with a mapped range.
4.3.3 Goto item

IxLexitem *1x_gotoitemnum(lxLexlist *list, int pos);

Goto item numbepos This is the "hard", or absolute, item number number (Ix_inum()).

4.3.4 Lexical items (Words)

The following functions return only items that are lexical items (wordd@TE: all lex (Ix_*lex()) operations
only return lexical items that are in range.

IxLexitem *1x_firstlex(lxLexlist *1list);
IxLexitem *1x_lastlex (lxLexlist *1list);
IxLexitem *1x_nextlex (lxLexitem *item);
IxLexitem *1x_prevlex(lxLexitem *item);

Like the others above, but returning only words.

4.3.5 Goto lexical item

IxLexitem *1x_gotolexnum(lxLexlist *list, int pos);

Goto item numbepos.Ix_gotolexnum() seeks by "soft" number (Ix_num()).

4.3.6 Flagged lexical items

1xLexitem *1x_firstflaggedlex(lxLexlist *list, int flags);
IxLexitem *1x_nextflaggedlex (lxLexitem *1x, int flags);

Return items that have the matching flags set.

int flags = 0;

IxLexitem *1x;

flags |= FL_ISUSRI;

for (lx = 1x_firstflaggedlex(list); 1lx; 1lx = 1lx_nextflaggedlex(lx)) {
printf ("$s\n", lx_token(lx));

4.3.7 Non-stopped lexical items (no omit flag set)

IxLexitem *1x_firstnslex (lxLexlist *1list);
IxLexitem *1x_lastnslex(lxLexlist *list);
IxLexitem *1x_nextnslex (lxLexitem *item);
1xLexitem *1x_prevnslex (lxLexitem *item);

Return items that do not have the omit bit set.

4.3.8 Non-stopped items with other flags set

IxLexitem *1x_firstnsflaggedlex(lxLexlist *1list, int flags);
IxLexitem *1x_nextnsflaggedlex (lxLexitem *1x, int flags);

Return items that do not have the omit bit set, and also have the matching flags set.

4.4 Basic index traversal functions

1xIndexnode *1x_firstindex (lxLexlist *1ist, TreeCursor *tp);
1xIndexnode *1lx_lastindex(lxLexlist *list, TreeCursor *tp);
1xIndexnode *1x_nextindex (TreeCursor *tp);
1xIndexnode *1lx_previndex (TreeCursor *tp);

Walk the lexical index in order. Items are necessarily lexical items (or they wouldn't be indexed), and the routines
automatically skip roots that do not appear in the text and orphan roots.

TreeCursor tp;

1xIndexnode *1i;

for (1i = 1x_firstindex(list, &tp); 1li; 1i = lx_nextindex(&tp)) {
printf ("$s\n", 1x_indextoken(li));

}

In the example above, walk the lexical index in order, printing each word.

4.4.1 Non-stopped words in the index

1xIndexnode *1lx_firstnsindex(lxLexlist *list, TreeCursor *tp);
1xIndexnode *1x_lastnsindex(lxLexlist *1list, TreeCursor *tp);
1xIndexnode *1lx_nextnsindex (TreeCursor *tp);
1xIndexnode *1x_prevnsindex (TreeCursor *tp);

Walk the lexical index in order, and return index nodes whose dependent items do not have the omit bit set.

4.4.2 The first and following occurences of words in a text

IxLexitem *1x_firstoccur (1xIndexnode *lexinode);
IxLexitem *1x_nextoccur (lxLexitem *item);
lxLexitem *1x_firstnsoccur (1xIndexnode *lexinode);
IxLexitem *1x_nextnsoccur (lxLexitem *lex);

Example, return the first and next in-range occurences of items:

10

1xIndexnode *1i;

IxLexitem *1x;

if ((1i = 1lx_findcaselexinode (list, "cow")) == NULL);
return -1;

for (1x = 1x_firstoccur(li); 1x; 1x = 1lx_nextoccur(lx)) {
printf ("%$s: %d\n", 1lx_token(lx), lx_inum(lx));

4.4.3 Index nodes that are root forms

1xIndexnode *1x_firstroot (1xLexlist *list, TreeCursor *tp);
1xIndexnode *1x_lastroot (1xLexlist *list, TreeCursor *tp);
1xIndexnode *1lx_nextroot (TreeCursor *tp);
1xIndexnode *1x_prevroot (TreeCursor *tp);

Return root items, both in-text and dangling (not in text and orphaned). For example:

TreeCursor tp;

1xIndexnode *11i;

for (li = 1x_firstroot(list, &tp); 1li; li = 1x_nextroot (&tp)) {
printf ("$s\n", lx_indextoken(li));

4.4.4 Any index node

1xIndexnode *1lx_firstinode (lxLexlist *1list, TreeCursor *tp);
1xIndexnode *1x_lastinode (lxLexlist *list, TreeCursor *tp);
1xIndexnode *1x_nextinode (TreeCursor *tp);
1xIndexnode *1x_previnode (TreeCursor *tp);

Return the first and following index nodes of any type.

4.5 Higher level list and index traversal

The IxTrav functions provide a higher-level interface to list and index traversal. The primary advantage is that
flags and Ixtv structure can be passed down through calling functions, allowing a higher level function to setup
behaviour for the lower level.

1xTrav *1x_travinit (1xLexlist *list, int flags);

Get and setup a new the traversal structure, and action. (See 4.5.1 for flag values and examples.) The traversal
structure returned must be later freed by calling Ix_travfree().

int 1x_travsetup(lxTrav *1lxtv, int flags);
Setup an existing traversal structure. (See 4.5.1 for flag values and examples.)
void lx_travfree (1xTrav *1xtv);

Free a traversal structure.

11

45.1 Flag values

Flag values passed to Ix_travinit() set the behaviour for the traversal:

Flags Description

LX_SELALL Select any and all items (list items only)
LX_SELLEX Select lexical items in range
LX_SELNSLEX Select non-stopped lexical items in range

Example for selecting items from list:

1xTrav *1xtv;

lxLexitem *1x;

Ixtv = 1x_travinit (list, LX_SELLEX);

for (lx = 1x_travfirst (1lxtv); 1lx; 1lx = lx_travnext (1xtv)) {
printf ("$s\n", 1x_token(lx));

}

1x_traviree (1xtv);
Example for selecting index entries:

1xTrav *1xtv;

1xIndexnode *1i;

Ixtv = 1x_travinit (list, LX_SELNSLEX);

for (li = 1x_travfirst(lxtv); 1li; 1i = lx_travnext (lxtv)) {
printf ("$s\n", 1x_indextoken(li));

}

1x_travfree(1lxtv);

Special index traversal and selection 3 NOTE: the following special actions apply only to index traversal for

special purposes. To select the index entries for ordinary items in the text, use the flags above.

Flags Description

LX_SELROOTS Select only word roots

LX_SELFORMS Select only word forms

LX_SELUNASS Select only word forms unassigned to any root
LX_SELORPHANS Select only orphan roots

LX_SELINODE Select any index node

Example selecting root forms from the index:

1xTrav *1xtv;

1xIndexnode *11i;

Ixtv = 1x_travinit (list, LX_SELROOTS);

for (1i = 1x_travfirst(lxtv); 1li; 1i = 1lx_travnext (1xtv)) {
printf ("$s\n", 1x_indextoken(1li));

}

1x_travfree (1xtv);

SLX_SELALL should encompass LX_SELINODE, and LX_SELINODE be dropped.

12

4.5.2 Listitems

IxLexitem *1x_travfirst (1xTrav *1xtv);
IxLexitem *1x_travlast (1xTrav *1xtv);
1xLexitem *1x_travnext (1xTrav *1xtv);
IxLexitem *1x_travprev (lxTrav *1xtv);

Traverse list items.

4.5.3 Index items

I1xIndexnode *1x_travfirstindex (1xTrav *1xtv);
1xIndexnode *1x_travlastindex (lxTrav *1xtv);
1xIndexnode *1x_travnextindex (lxTrav *1xtv);
1xIndexnode *1x_travprevindex (1xTrav *1xtv);

Traverse the list index.

4.5.4 First and following occurences of words

Plain word

IxLexitem *1x_travfirstoccurtoken (lxTrav *1lxtv, char *token);
IxLexitem *1x_travfirstoccur (1xTrav *1xtv, lxIndexnode *lexinode);
IxLexitem *1x_travnextoccur (lxTrav *1xtv);

Return the first and then following occurences of a word in the text.

Root word

IxLexitem *1x_trav_r_ firstoccur (lxTrav *1lxtv, lxIndexnode *rootinode);
IxLexitem *1x_trav_r nextoccur (1xTrav *1xtv);

Return the first and then following occurences of a form of the root in the*text.

4.5.5 Flagged items
1xLexitem *1x_travfirstflagged(lxTrav *1xtv, int flags);
1xLexitem *1x_travnextflagged(lxTrav *1lxtv, int flags);
45.6 Gotoitem

Return the first item in the list that has the matching flag bits set.
1xLexitem *1x_travgoto (lxLexlist *list, int pos);

Return the item at positiopos If selection method is LX_SELALL, then the position is the hard item number.
If the selection method selects lexical items (LX_SELLEX, LX_SELNSLEX) the position number is the soft
number.

4Should have Ix_trav_r_firstoccurtoken().

13

4.6 Omitting words (stop lists)

Words can be flagged for omission by running a stop list against the loaded text. Lx provides some built-in
functions to make this simple.

int 1x_loadstops(lxLexlist *1list, char *input);

int 1x_stopfromlist (1xLexlist *list, blist *wordlist);
int 1x_clearstops(lxLexlist *list);

int 1x_reversestops (lxLexlist *list);

These functions are wrappers for the more general flag-setting functions below.

Item renumbering ~ When a stop list is run against a text, the “soft” item numbers are renumbered so as to not
include the stopped items.

4.7 Setting and clearing flags
4.7.1 Setting and clearing flags for words and lists of words

int 1x_ioflagfromlist (lxLexlist *1ist, char *input, int flags);

void 1x_flagfromlist (1xLexlist *1list, blist *wordlist, int flags);

void lx_flagnotfromlist (1xLexlist *1list, blist *wordlist, int flags);
void 1x_flagoccurfromlist (1xLexlist *1list, blist *wordlist, int flags);
void lx_unflagall (1xLexlist *1list, int flags);

4.7.2 Providing an external function to select and change flags

int 1x_changelistflags (lxLexlist *1list, int (*select) (int, int));
int 1x_changetokenflags (lxLexitem *item, int (*select) (int, int));

NOT IMPLEMENTED YET

4.7.3 Renumbering

vold lx_renumber (1xLexlist *1list, int fset, int fnset);

4.8 Roots and forms of words
4.8.1 Loading and printing roots and forms

int 1xf_loadforms (1xLexlist *1list, char *input);
int 1xf_loadformsfromio (lxLexlist *list, IO *io);
void 1xf_dumpformstoio(lxLexlist *list, IO *io);

4.8.2 Adding and deleting roots and forms
1xIndexnode *1xf addroot (1xLexlist *1list, char *root);

Add (create) a new root word in the index. If the word already exists in the text, then it is simply marked as being
a root; if the word does not already exist, it is inserted in the index as a “dangling” entry (a word that exists in the
entry but not the text).

14

int 1xf_delroot (1xLexlist *1list, char *root);

Delete a root word. If the word does not exist in the text, it is not deleted, but becomes an “orphan” root. If there
are dependent forms mapped, Ixf_delroot() will return -1 and set Ixerrnum to LXASSFORM.

int 1xf_delforms (lxLexlist *1list, char *root);
Delete all forms for a root word. Returns -1 on failuredgbt is not a root word.
int 1xf delrootandforms (1lxLexlist *list, char *root);
Delete all forms for a root word, and then delete the root itself. Returns -1 on failuretis not a root word.
int 1xf_addformbynames (1xLexlist *1list, char *root, char *form);
Add a formformto the root wordoot.
int 1xf_addform(lxLexlist *1list, 1lxIndexnode *rootip, char *form);
If the root word index node is knowiigrm can be added with Ixf_addform().
int 1xf_addformbyinodes (1xIndexnode *rootip, lxIndexnode *formip);

And most efficient of all, if both the root and form index nodes are known, Ixf_addformbyinodes() will add
formip with no lookups at all.

int 1xf_delform(lxLexlist *list, char *form);

Delete the fornform. (Really, just disassociate it from its root.) Returns -foiim does not appear in the index,
its not assignedf to a root, or if it is itself a root.

4.8.3 Low-level finding and dereferencing roots and forms
1xIndexnode *1xf_ rootindexnode (1xIndexnode *11i);

Return pointer to index node of root; NULL if not exist.

IxLexitem *1xf_rootaslex(lxIndexnode *1i);

Return pointer to the first occurence of root fioin text. Returns NULL if either root does not exist, or does not
occur in text.

char *1xf_rootastoken(lxIndexnode *1i);

Return pointer to the token string of the first occurence of the root for li. Returns NULL if root does not exist.
1xIndexnode *1xf firstformforroot (1xLexlist *1list, char *root);

Looks up root in index, returns pointer to the first form of the root.

1xIndexnode *1xf firstform(lxLexlist *1list, char *word);

15

Looks up word in index, finds root, and returns pointer to the first form of the word.
1xIndexnode *1xf_ nextform(lxIndexnode *1i);
Returns the next form of the word in the index.
1xIndexnode *1xf_firstassigned(lxLexlist *list, TreeCursor *tp);
Returns the first assigned form in the index tree.
1xIndexnode *1xf_nextassigned(TreeCursor *tp);
Returns the next assigned form in the index tree.
1xIndexnode *1xf_firstunassigned(lxLexlist *1list, TreeCursor *tp);
Returns the first unassigned form (word) in the index.
IxIndexnode *1xf_nextunassigned (TreeCursor *tp);
Returns the next unassigned form (word) in the index.
1xIndexnode *1xf_firstorphan(lxLexlist *list, TreeCursor *tp);
Returns the first orphan node in the index (was a not-in-text root, then was deleted).
1xIndexnode *1xf_nextorphan (TreeCursor *tp);
Returns the next orphan node in the index (was a not-in-text root, then was deleted).
char *1xf_ itemtorootword(lxLexlist *list, lxLexitem *item);
Return token string for root of word as lexical item (in lexical list).
char *1xf wordtorootword(lxLexlist *1list, char *word);
Return token string for word as string.
void 1xf_tellform(lxIndexnode *1i, IO *io);

Dump form information for index node (for debugging).

4.8.4 Higher-level finding and dereferencing roots and forms

int 1xt_setderef (1xTrav *1lxtv, int flags);

Set the dereference type flags in a traversal structure. If this is not called, the default is to perform no root
look-ups (LX_DEREFTOKEN).
The possible flags are:

Flag Description
LX_DEREFTOKEN Return word as word itself.
LX_DEREFROOT Return root for word OR word itself if no root

16

char *1lxt_dereftoken (lxTrav *1xtv);

Return the root word for the current item in the traversal, or the word itself if it is not assigned to a root.
char *1x_dereftoken(lxLexlist *list, lxLexitem *item, int flags);

Return the root word foitem, or itemitself if not assigned to a root.
char *1x_derefindextoken (lxIndexnode *inode, int flags);

Return the root word for the index nodedeor the word forinodeitself if it is not assigned to a root.

4.9 Classification schemes and categories

1xClass *1lxc_addclass (1xClass *classes, char *classname);

Create a classification scheme and add to the list of classification schemes. Returns a pointer to the newly created
class, which is also the head of the new class list. So be careful to preserve classes:

if ((cp = lxc_addclass(classes, "newclass")) == NULL);
return -1;

classes = cp;

1xClass *1xc_delclass(1xClass *classes, char *classname);

Delete a classification scheme from the list of classification schemes. Returns a pointer to the (possibly new)
head of the list of classes.

int lxc_addcateg(lxClass *class, char *cateq);

Add a category to the classification scheme. If the category already exists, Ixc_addcateg() will silently return 0
for success.

int 1xc_addcategbyname (1xClass *classes, char *classname, char *cateq);
Add a category to the classification scheme, selecting the scheme by name.

int 1xc_delcateg(lxClass *class, 1xCatinode *cinode);
Delete a category from the classification scheme.

int 1xc_delcategbyname (1xClass *classes, char *classname, char *cateq);
Delete a category from the classification scheme, selecting the scheme by name.

1xCatinode *1xc_addxcateg(lxClass *class, char *cateq);

Add a category to the classification scheme. This does not check to see if the category exists. This
function is used internally, and is exported for use in things like bulk scheme loaders.

int lxc_addsubcateg(lxClass *class, char *categ, char *subcateq);

Add a subcategory to a category. If either the category or the sub-category do not already exist
they will be created.

17

int 1lxc_addmember (1xClass *class, char *categ, char *lex);

Add a lexical member to a category.
NOTE: If the category doesn’t exist it will be created.

int 1xc_addmemberbyname (1xClass *classes, char *classname, char *categ, char *lex);
Add a lexical member to a category, selecting the class and category by name.

void lxc_freecategs (lxClass *class);
Free the category data in a classification scheme. Use Ixc_delclass() to delete the classification itself.
4.9.1 Binding classes and lexical indexes

int lxc_bindclass(1lxClass *class, lxLexlist *lexlist);

Attach the classification scheme to the lexical list. This sets up the pointers class->lexlist, and lexlist->class; and
then for each item in the classification index, sets a pointer (item->lexinode); to the corresponding lexical item

in the lexical index, and another pointer back from that item to the classification item (lex->catinode). So each

classified term points to its occurences in the text, and each lexical item in the text points to its occurence in the
classification scheme.

int 1xc_bindclassbyname (1xClass *classes, char *classname, 1xText *text, char *lexname);
Ixc_bindclass() by name of class and lexical list.

int lxc_releaseclass(1lxClass *class);

Dissassociate the class from the lexical list it is bound to. (Can be called through the lexical list without looking
up the class by calling Ixc_releaseclass(lexlist->class).

int lxc_releaseclassbyname (1xClass *classes, char *classname);
Dissassociate the named class from the lexical list it is bound to.

int 1xc_releaseclasslexbyname (1xText *text, char *lexname);
Dissassociate the named lexical list from the class it is bound to.
4.9.2 Class and category searching and retrieval

1xClass *1xc_findclass(1lxClass *classes, char *classname);
Find the class with the name classname in the list of classes.

1xCatinode *1xc_findcatinode (1xClass *class, char *token, int flags);

Find the category index node that indexes "token" where the flags is one of CAT_ISLEX or CAT_ISCAT.

18

1xIndexnode *1lxc_findcatinode (1xClass *class, char *token);
1xIndexnode *1lxc_findcatlex(lxClass *class, char *token);

Useful macros that call Ixc_findcatinode() with the correct flags.

¢ Ixc_findcateg() findsokenin class wheré¢okenis a category name.

¢ Ixc_findcatlex() findsokenin class wheré¢okenis a word.

1xCatinode *1lxc_catfromlnode (1xCatlnode *node);
1xCatinode *lxc_mbrfromlnode (1xCatlnode *node);

Macros: return the category index nodes pointed to from a category list node, member and category versions.

1xIndexnode *1xc_lexinodefromlnode (1xCatlnode)
lxLexitem *1xc_lexfromlnode (1xCatlnode);

Macros: return the lexical index node or the first instance of the lexical item itself, pointed to from a category list
node. NOTE: Class must be bound or will return NULL; no error set.

1xCatStack *lxc_newcatstack (int maxsub);
Instantiate a new stack structure (for use below in Ixc_firstwordforcat(); and Ixc_nextwordforcat().
voild lxc_setcatstack (1xCatStack *stack, int maxsub);

Reset the stack, and set it's maximum depth to be maxsub. (Absolute maximum depth is CAT_MAXSUBS
defined in Ix_lex.h) This is as far as the category walking routines will go in tracing subcategories. Once this
depth has been reached, further subcategories will not be expanded (traced), but skipped over.

void lxc_freecatstack (1xCatStack *stack);
Free a category stack.

1xCatlnode *1xc_firstwordforcateg(lxCatStack *stack,

1xClass *class, char *cateq);
1xCatlnode *1lxc_firstwordforcat (1xCatStack *stack, l1xCatinode *cip);
1xCatlnode *1xc_nextwordforcat (1xCatStack *stack, l1xCatlnode *cnp);

Ixc_firstwordforcat() returns a pointer to the node for the first word for category "categ" in class "class".

stackis a pointer to a category stack previously created with Ixc_newcatstack(). The node returned contains
two pointers to items in the index. One, node->catlinode, points to the index node for the lexical item. The
other, node->catcinode, points to the index node for the category name. The category name can be returned by
node->catcinode->token. The lexical item (the string) can be returned by node->catlinode->token.

If the class is bound to a lexical list, the lexical items occurence in the index for that list is pointed to by
node->catlinode->lexinode, and thence on to the lexical stream and the occurences of the lexical item in that
stream.

Example (list the words in a category):

19

1xClass *cp;

1xCatStack *sp;

1xCatlnode *clp;

cp findclass(1lx_Classes, "dylan.class");
sp = lxc_newcatstack (10);

for (clp = lxc_firstwordforcateg(sp, cp, "light"); clp;
clp = nextwordforcat (sp, 1lp)) {
fprintf (stdout, "%s\n", clp->catlinode->token);
}
1xc_freecatstack (sp);
1xCatlnode *
lxc_firstcatforword(lxClass *class, char *lex);

Returns the first category index node containing the word pointed to by "lex".
1xCatlnode *1lxc_nextcatforword(lxCatlnode *last);

Returns the next category index node after "last".

4.9.3 Loading and dumping (printing) categories

void lxc_dumpclasstoio(1xClass *class, IO *io);
Writes the category index to io. The output is the same as the input accepted by Ixc_loadclassfromio() below.
int lxc_loadclassfromio(1xClass *class, IO *io);

Read categories and members from io. Category hames are tokens first on a line and end in ":", subcategories are
marked with a leading "+".
For example:

nature:

+animals

+vegetation

twater

+geology

sky

clouds
animals:

+wild_animals

+domestic_animals
wild_animals:

bear

deer

lynx
domestic_animals:

cow

horse

dog

20

cat
vegetation:
tree
leaf
grass
flower
water:
river
stream
sea
current
banks
geology:
mountain
rock
rocky

More than one item can appear on a line, but if redumped by Ixc_dumpclasstoio(); the output will be "expanded"
as above. Lines beginning with '# are taken to be comments and are ignored (and will also be lost on a dump):

nature is upper level and included several categories.
we could perhaps create a seperate "sky" category.
nature: tanimals +vegetation +water +geology sky clouds
animals: +wild_animals +domestic_animals

wild_animals: bear deer lynx

domestic_animals: cow horse dog cat

vegetation: tree leaf grass flower

water: river stream sea current banks

geology: mountain rock rocky

4.10 Gathering Context for Lexical Iltems
1xContext *1x_newcontext (1xLexlist *list, int flags, int left, int right);

Create and return new context structure for list. Flags indicate the lexical types that will be accepted, left and
right indicate how much context to gather from the the left and right sides of items. The default is to collect
only non-omitted, in-range, lexical items. Flags possible are LX _SELNSLEX (default, 0), LX_SELLEX (also
collect stopped items), LX_SELALL (also collect non-lexical items). The pointer to the list can be NULL: but
*catcontext operations below will fail and set Ixerror LXCTXNOLIST.

void 1lx_freecontext (1xContext *1lc);

Ic_freecontext() must be called to free the memory allocated by Ix_newcontext().
int 1x_getlexcontext (1xContext *1lc, char *lex);

Find lex in the index and then return Ix_getcontext().

int 1x_getcontext (1xContext *1lc, lxLexitem *item);

21

Get context for an item. Pointers to selected items left and right of the passed item are returned in the IxContext

structure and can be accessed with the functions below. Ix_nextcontext() can be used to return the context for the
next occurence of the item.

int lx_nextcontext (1xContext *1c);
int 1x_getcategcontext (1xContext *1lc, char *cateq);

Find categ in the class index and then return Ix_getcatcontext().
int 1x_getcatcontext (1xContext *1lc, 1xCatinode *catinode);

Get context for an item bound to the category node catinode. Ix_nextcatcontext() can be used to return the context
for the next occurences of the item or the next item in the category.

int 1x_nextcatcontext (1xContext *1c);
IxLexitem *1x_lfirstfromcontext (1xContext *1c);

Return the leftmost item from the context Ic. Resets the internal index to the "current" context item. The se-

guences Ix_Ifirstfromcontext(), Ix_Inextfromcontext(), Ix_rfirstfromcontext() Ix_rnextfromcontext() move from
left to right in the text stream, with the key item in the center.

Fo fom +

| | | | | | \ | \

10 11 12 ... 1n key item r0 rl r2 ... rn

~ *... 1x_lnextfromcontext () ~ ~... 1x_rnextfromcontext ();
| |

1x_lfirstfromcontext () 1x_rfirstfromcontext ();

The number of items varies depending on

1. the size of the left and right contexts specified in the call to Ix_newcontext();, and

2. the number of items available in context; for example, the first word in the text will have nothing to the left
of it, the last nothing to the right.

IxLexitem *1x_lnextfromcontext (1xContext *1lc);
Return the next item (righthand) from the context Ic.
IxLexitem *1x_rfirstfromcontext (1xContext *1c);
Return the first item to the right of the context key item. Resets the internal index to the "current” context item.
1xLexitem *1x_rnextfromcontext (1xContext *1lc);
Return the next item to the right in the context.
int 1x_lnumfromcontext (1xContext *1c);
Return the number of items in context to the left.

int 1x_rnumfromcontext (1xContext *1c);

22

Return the number of items in context to the right.
int 1x_llenfromcontext (1xContext *1c);

Return the sum of the lengths of the items in the left-hand context.
int 1lx_rlenfromcontext (1xContext *1lc);

Return the sum of the lengths of the items in the right-hand context.
void 1x_dumpcontext (1xContext *1c, IO *io);

Print (dump) context information. For debugging.

4.10.1 Context example

int
getandprintcontext (1xLexlist *list, lxLexitem *1x);
{
1xContext *lc;
1xLexitem *1xp;
lc = 1x_newcontext (list, LX_SELNSLEX, 4, 4);
if (!'lc);
return -1;
if (1lx_getlexcontext (lc, 1x) == -1);
return -1;
for (lxp = 1x_lfirstfromcontext (lc); 1xp;
lxp = lx_lnextfromcontext));
printf("%$s ", 1lx_token(lxp));
printf("%s ", lx_token(lx));
for (lxp = 1lx_rfirstfromcontext (lc); 1xp;
lxp = 1x_rnextfromcontext));
printf("%$s ", 1lx_token(lxp));
return 0;

}

NOTE: we should provide need a simple context dumper, from left to right (Ix_firstfromcontext()).

4.11 Formatting and printing items

These routines provide a facility for printing items and lines of text. State is gathered in a structure called a
IxLine. Flags set at initialization (or changed later), control how and whether items are formatted.
These routines will:

e Return the entire line of text that an item is in;
e Return the line number of text that an item is in;
e Format or skip markers and counters for printing or display;

e Format individual items.

23

4.11.1 Include files

IxLine structure and function definitions are not included from Ix_lex.h, but rather from Ix_print.h. Ix_lex.h must

still be included, however.

#include <1x_lex.h>
#include <lx_print.h>

4.11.2 Flags

A number of flags are defined to control the formatting of the line items that are stored into IxLine:

Flags Description Example output
LXP_NOMKR no markers

LXP_NOOMIT no omit

LXP_NORNG no range markers

LXP_NOCTR no counters

LXP_NOCOMM no comments

LXP_RNG_NAME
LXP_RNG_MARK
LXP_RNG_TYPE
LXP_RNG_NAME | LXP_RNG_VALUE
LXP_RNG_MARK | LXP_RNG_VALUE
LXP_CTR_VALUE
LXP_CTR_NAME
LXP_CTR_MARK

print range name
print as range marker
print range type

cordelia
<cordelia>
speaker

cordelia=speaker
<cordelia=speaker>

LXP_CTR_NAME | LXP_CTR_VALUE
LXP_CTR_MARK | LXP_CTR_VALUE
LXP_DRF_PLAIN

LXP_DRF_ROOT

LXP_DRF_MROOT
LXP_DRF_MFORM

4.11.3 Flag testing macros

int lxp_nomarkers(int flags)
int lxp_noranges (int flags)
int lxp_nocomments (int flags)
int lxp_nocounters(int flags)
int 1xp_noomit (int flags)

4.11.4 Line information

IxLexitem *1xp_linestartitem(lxLine *line);
Return the item at the start of the line.

IxLexitem *1xp_lineenditem(lxLine *line);
Return the item at the end of the line.

int lxp_lineno(lxLine *line);

Return the line number of the line.

24

print counter value 7
print counter name p
print as counter marker <p>
p7
<p=7>

plain lexical item houses
root of lexical item house
marked root [house]
marked form [houses]

4.11.5 Line initialization and reinitialization

1xLine *1lxp_initline(lxLexlist *list, int flags);

Initialize a line structure for the lexical list "list". The flags control which list items are displayed, and how things
like markers and counters are displayed

void lxp_setlineforitem(lxLine *line, lxLexitem *1i, int flags);

Set the line structure to return the line that li is in on the next call to Ixp_fillline(). If flags = 0, then no change to
the flags. Otherwise the flags are set to the passed value.

void lxp_resetline(lxLine *line, int flags);
Reset the line structure back to the start of the list. Optionally change the flags.
void lxp_freeline(lxLine *line);
Free a line structure and its associated buffer.
4.11.6 Return formatted lines and items
char *1xp_fillline(lxLine *1line);
Return line with the buffer filled with a formatted line. The buffer is automatically resized as needed.
char *1lxp_fmtitem(lxLexlist *1list, lxLexitem *1i, int flags);

Return a pointer to a formatted string representing the item’s token. This may be a pointer to a static buffer
(rewritten on the next call) or a pointer to the item in the list. Do not try to alter or write to this string: copy first.

4.11.7 Line information for items

These functions are used internally by the IxLine routines, but are generally useful enough that they are exposed
for other use.

1xLexitem *lxp_getlinestart (1xLexitem *1i);
Return the pointer item at the start of the line thas in.
IxLexitem *1xp_getlineend(lxLexitem *1i);
Return a pointer to the item at the end of the line that in.
int lxp_getlineno(lxLexitem *1i);

Return the line number of the line thais in.

25

4.12 Ranges

Ranges are typically defined at text load. However, new ranges can be added, changed and deleted at any time.

A range set is a list of range elements. Each range element defines a start and end text list item, and flag as
to whether the range element subtracts from or adds to the range. A range set also has a name (“CORDELIA")
and a type (“speaker”). The text list head maintains a list of range sets defined for that list, and a pointer to the
currently applied (mapped) range set. If the pointer to the current range set is NULL, the mapped range set is the
defaultrange set, or everything in the list. This is also called the “*” range set.

Range expressions provide a standardized method for defining a range set, or group of range sets, as a
character string. See 4.12.5 below.

4.12.1 Name of current range
char * lxr_current_range (1xLexlist *list);
Returns a pointer to the name of the current range set, or "*" if there is no limiting set (the whole text is in range).
4.12.2 Mapping ranges
int lxr_apply_range(lxLexlist *list, char *name);
Clear current mapping and apply named mapping to entire list.
int 1xr_default_mapping (lxLexlist *list);
Set the range bit(s) for the entire list.
int lxr_invert_mapping (lxLexlist *1list);
Invert current mapping. Sets st->ranges.curset->invert to note that current mapping has been invefted.
4.12.3 Adding ranges
int 1xr_add_rangeset (1xLexlist *list, char *name);

Create a new empty range set of name "name".

int 1xr_adjust_range (lxLexlist *list, char *name, lxLexitem *start, lxLexitem *end, int flags)

Insert a new range for a range set. Flags can{B&GADD, LXRNGSUB

int 1xr_append_rangeset (1xLexlist *list, char *target, char *source, int invert);

Append one range set to another. The source range set is not modified. If invert is specified, invert the sense of
the appended rangassRNGADDS become.XRNGSUBS, and vice versa.

Sput how clear when mapping changed? unset on change? but what if changed and not applied: OR is mapping ALWAYS applied on
change?)
When adjusting range, invert flag must be checked and opposite sense of mapping applied?
Might be cleaner almost to undo inversion on any change? i.e. any adjustment results in global remapping? Ugh.

26

int 1xr_append_by_type_member (1xLexlist *list, char *target, char *name, char *type, int inver

Append the named member range set of a type: for example, "Actl" of the type "Acts". The unnamed members
are explicitly reverse-mapped: e.g. if they aRNGADDS then they becomexrNGSUB, and so will be mapped
out of range. This itself can be inverted with the invert flag. If invert is specified, invert the sense of the appended
rangesL.XRNGADDS becoma.XRNGSUBS, and vice versa.

XX need to do more than one member: must take array or list, or do overlay where only the specified mapping
type changes: only adds are added, dels are ignored, or vice versa.

1xRangeset *1xr_scan_to_rangeset (1xLexlist *1list, char *rsname);

Generate a range set by scanning the lexical list and mapping items that are in range.

4.12.4 Deleting ranges

int 1xr_del_rangeset (1xLexlist *list, char *name);
Delete the rangeseame

int 1lxr_clear_rangeset (1xLexlist *1list, char *name);

Delete (clear) range elements for range set.

4.12.5 Range expressions
Ranges may be expressed as character string range expressions, which Ixr_parserange() returns as a range set.
1xRangeset *1lxr_parserange (lxLexlist *1list, char *rangeexpr);

Find, or create and store range selishrange sets. Except in the case where the range already éxéstange
is created with the expression as its namelf rangeexpris "*" (the whole list), this function returns NULL
with 1xerrnum set toLXRDEFRNG if . The caller may then call Ixr_default_mapping(). Not pretty really.

Valid range expressions are:

Expression Description

CORDELIA Returns map for existing range set

1=211-251 Map from counter | where values are 211 to 251
CORDELIA+1=211-251 The union of both of the above

2021-3051 Map from items 2021 to 3051 (hard item numbers)
CORDELIA+FOOL Union of the range sets CORDELIA and FOOL
*+!CORDELIA Everything except CORDELIA

Future syntax will be more “logical’aCT_1 & (CORDELIA | “KING LEAR”)

4.12.6 Range set setup and teardown

These functions are mostly used internally at list creation or teardown.
int lxr_init_ranges(lxLexlist *list);

Initialize ranges for list. Clear and free any existing ranges and range sets, set for default range (all items).
int 1xr_free_ranges(lxLexlist *list);

Free all range structures. For list teardown.

27

4.12.7 Finding range sets

1xRangeset *1lxr_get_rangeset (1xLexlist *1list, char *name);
Return pointer to rangeseame
4.12.8 Walking through range sets
1xRangeset *1lxr_first_rangeset (lxLexlist *list);
Return pointer to first rangeset in list of rangesets.
1xRangeset *1xr_next_rangeset (1xRangeset *rset);
Return pointer to first next rangeset followirgget
1xRangeset *1lxr_first_rangeset_of_type(lxLexlist *1list, char *type);
Return pointer to first rangeset of typge
1xRangeset *1xr_next_rangeset_of_type (lxRangeset *rset, char *type);
Return pointer to first rangeset of typgefollowing prevrs.
4.12.9 Utility
int 1lxr_print_range (1xRangeset *rset, IO *io);
Print out values of ranges in rangeset. (not in IX_lex.h?)
int lxr_check_ranges(lxRangeset *rset, IO *io);

Check all structures, references and that all range values are valid (in range!) Check that applied range matches
range value$.

1xRange *1xr_makeitemrange (1xLexlist *1list, int start, int end);

Generate a range structure for the items numbstad andend Returns NULL on malloc error, or if start or
end do not occur in the list.
4.13 Counters

Unlike range markers, counters do not define a range of text, they merely count, or provide a positional indicator.
Counters are stored in a hash table in the list structure, where the key is the name of the counter, and the value a
pointer to the first instance. Further instances are chained as are regular lexical items.

4.13.1 Define a new counter

int 1x_new_counter (lxLexlist *1list, char *name, lxLexitem *11i);

Define countename at itemli. If the counter of that name does not exist, it is created. Othefiwvisedded to
the end of the list of items for the counter.

6use range bit RNG1 or 2, and then compare?

28

4.13.2 Find a counter by name

1xLexitem *1x_getcounter (lxLexlist *list, char *name, int num);

4.13.3 Goto counter by value
IxLexitem *1x_skiptocounter (1xLexitem *1, int num);

For example, if we have a counter callpdra that marks paragraphs, to return the items at the start and end of
the range of paragraphs 101-123:

IxLexitem *1lis;

1xLexitem *lie;

lis = 1lx_getcounter(list, "para", 101);
lie = 1x_skiptocounter(lis, 123);

(Ix_makecounterange() in 4.13.6 below is a special impelmentation of this.)

4.13.4 Walk through counters
IxLexitem *1x_firstcounter (lxLexlist *1list, char *name);
1xLexitem *1x_nextcounter (1xLexitem *1);

4.13.5 |Initialise and teardown the list counters table

These functions are used internally at text load and unload.
int 1x_init_counters(lxLexlist *list);

void 1x_free_counters(lxLexlist *1list);

4.13.6 Make range element from counter pair

1xRange *1x_makecounterrange (1xLexlist *1list, char *name, int start, int end, int mode);

Special support for incorporating counters into range expressions.

4.14 Opening and closing files, pipes, and linked lists

I0 *1x_open(char *name, char *mode);
int 1x_close (IO *io);

Ix_open() and Ix_close() provide interfaces to ioopen()/ioclose() with features specific to the Ix library: they
interpret the name of the object to be opened to determine whether it is a file, a pipe or a linked list. They use the
global Ix_Lists as a home (or anchor) for named linked lists (blists).

Form of string Object opened Example
name file 1x_open(“lear.txt", “r");
[name pipe 1x_open (“|zcat lear.txt.gz"“, “r"“);
@name blist (linked list); 1x_open (“Glear_tmp“, “r");

If it is asked to open a list, Ix_open() looks in the global list of lists Ix_Lists for an list of that name; if it can’t
find one there it creates one. In turn, Ix_close() calls io2blist() to drop the 10 structure without deleting the blist,
which now remains in Ix_Lists; otherwise it calls ioclose().

29

4.15 Stream-like Behaviour for Lexical Lists

| am not sure of the utility of these routines.

e Needs reference counts for open lists
e Needs an Ix_ungetc()

e This should probably go away: use Ix_print.c
4.15.1 Open, close, seek, set
1xStream *1x_openstream(lxLexlist *list);
"Open" a stream: allocate and associate a IxStream structure with a lexical lexical list.
1xStream *1lx_dupestream(lxStream *old);
Duplicate a IxStream.
int 1x_closestream(lxStream *1xs);
Close down and free the IxStream.
int 1x_seekstream(lxStream *1xs, size_t offset, int whence);
Seek to byte offset in stream. Like fseek().
size_t 1x_tellstream(lxStream *1xs);
Return byte offset in stream. Like ftell().
int 1x_setstream(lxStream *1xs, lxLexitem *1xi);

Set stream position to passed lexical item. Current pointer will be positioned at start of item stririis If
NULL, stream position is unaffected.

If the Ixi is not a member of the stream Ixs, Ixerrnum will be set to LXINVAL and Ix_setstream() will return
-1.

4.15.2 Get character, get string
int 1x_getc(lxStream *1xs);

Get the next character from Ixs, return character or EOF if end of stream.
XXX should set Ixerrnum to something, LXEOF.

char *1x_gets(char *s, size_t n, 1xStream *1xs);

Getalineinto s, return s, or NULL no input on EOF. XXX should set Ixerrnum to something, LXEOF.

30

4.15.3 Get components

I1xLexlist *1x_listfromstream(lxStream *1xs);
Return pointer to the list that IxStream Ixs is associated with.
IxLexitem *1x_lexfromstream(lxStream *1xs);
Return pointer to the item that IxStream Ixs is positioned at.

int 1x_flagsfromstream(lxStream *1xs);

Return value of flags for item that IxStream is currently positioned in.
XXX CURRENTLY UNUSED, ALWAYS RETURNS 0.

31

4.16 Error codes and messages

[72)

— <

| Error String | Error Code | Description |
"Error 0" NOERR No error code not set
"System error" LXSYSERR System call or library error (check errno)
"Lex I/O error" LXIOERR IO error(Ix_open(), check errno)
"No such category"” LXNOCATEG Cannot find named category
"No such class” LXNOCLASS Cannot find named class
"Lexical item not found" LXNOITEM Cannot find lexical item in index
“No such lexical list" LXNOLEXL Cannot find named list
"No such text list" LXNOTEXT Cannot find named text (list of lists)
"No such root form" LXNOROOT Cannot find root form in list index
"Category already exists" LXECATEG Attempt to add category that already exist
"Class already exists" LXECLASS Attempt to add class that already exists
"ltem already exists" LXEITEM Attempt to add lexial item already existing
"Lexical list already exists" LXELIST Attempt to create list that already exists
"Text already exists" LXETEXT Attempt to create text that already exists
"Root form already exists" LXEROOT Attempt to define existing root form
"Form already assigned to root" LXEFORM Attempt to assign form already assigned
"Class already bound", LXCLASBND Attempt to bind class already bound
"Lexical list already bound", LXLISTBND Attempt to bind to list that is already boun
"Class not bound" LXCLASNBND Attempt to reference a classs not bound
"Lexical list not bound" LXLISTNBND Attempt to reference a list not bound
"Category cannot belong to self" LXBADSUB Category cannot have self as sub-categor
"Can’t map back to list from context” LXCTXNOLIST | Failure to get from context to list (deleted?
"Invalid parameter" LXINVAL General invalid parameter or flag
"Range set already exists" LXREXIST Attempt to create existing range set
"No such range set" LXRNOEXIST Cannot find specified range set
"Lexical item does not exist in list" LXRBADITEM Bad pointer to item
"Cannot invert default range" LXRINVDEF Cannot have nothing
"Default range in expression” LXRDEFRNG Expresssion evaluates to everything
"Invalid range action flag" LXRBADFLAG Bad flag passed
"No closing comment marker" LXMCLOSECOMM | Saw end of text before end of comment
"ltem is not a marker" LXMNOTMKR Item referenced as a marker, isn't
"Counter already exists" LXCNTEXIST Counter of that name already exists
"No such counter" LXCNTNOEXIST | Cannot find specified counter
"Invalid counter number" LXCNTBADNUM | No such counter with that value
"Cannot seek backward in counters" LXCNTSEEKBCK | Can only go forward in counters
"ltem is not a root form" LXNOTROOT Attempt to use non-root form as root
"ltem is not an assigned form" LXNOTFORM Attempt to find root for non-assigned form
"Root still has assigned forms", LXASSFORM Cannot delete root before detaching form

\"2)

"Attempt to delete form that is really root

" LXDELROOT

Attempt to delete as form what is really ro

32

5 General Data Structures

5.1 Buffer list functions
5.1.1 Finding an existing list

blist *findblist (blist *head, char *name);

Find and return a pointer to the blist named "name" in the list of blists headed by "head".

5.1.2 Creating a new list

blist *newblist (blist *head, char *name, int flags);

Create a new blist. lhead != NULL, then new blist is becomes the new head of the list of blistealt !=
NULL, the list is given "name" as a namelist->serial is set to the last used serial # + 1; note that other
operatations (particularily draining a list) will also cause the serial # to increment. It is a number to track content,
more than the list itself.

Theflagsparameter is assignediaist->b_flags, and controls the list's behaviour. Possible values are:

Flag Description

BL_ALLOC duplicate (alloc) data on insertion

BL_FIXED notused here, but by blstr routines; allocate fixed buffer size and copy in
BL_LOCK no new additions/deletions, read-only

BL_LOCKHD lock blist head structure. delblist() then only deletes contents

BL_USRLCK not used by blist library, but exists for caller use

5.1.3 Freeing lists and list contents

blist *freeblist (blist *head, blist *blist);

If "head" '= NULL, remove "blist" from the list headed by "head". Call freebitems to delete all the items in
"blist", and then delete "blist" itself. If BL_LOCK flag is set, list will not be deleted. If BL_LOCKHD flag is set,
the list contents (the items) will be deleted, but the list will remain. That is, the list will be emptied.

void freebitems (blist *blist);
Delete all the items in "blist". If BL_ALLOC flag is set for list, data is also freed.
5.1.4 Adding items to a list
int addbitem(blist *blist, void *data, size_t size, int where);
Add an item to "blist". The location of its insertion depends on the parameter "where", which may be one of:

Flag Description
BL_INSERT_HEAD Insert at head of list
BL_INSERT TAIL Insertat end of list
BL_INSERT_NEXT Insert after current item
BL_INSERT PREV Insert before currentitem

33

How data in inserted also depends on "blist"'s flag settings. If BL_ALLOC is set memory is allocated for the
data and it is duped, else a pointer is merely set to point to the passed in data. The cursor (list->b_cur) is set to
point to the just inserted item.

5.1.5 Freeing a single item
void freebitem(blist *blist, bitem *bitem);

Extract and delete a single bitem. If BL_ALLOC flag is set for list, data is also freed.

5.1.6 Returning current cursor position
int eoblist (blist *1list);

Return 1 if cursor is at tail of list. 0 otherwise. NOTE: this will return 1 if list is empty.
void *curbitem(blist *blist);

5.1.7 Walking the list

Return a pointer to the data in the current item (blist->b_cur).
voild *firstbitem(blist *blist);

Return a pointer to the data in the first item in "blist"; set blist->b_cur to point to the item.
void *nextbitem(blist *blist);

Return a pointer to the data in blist->b_cur->next; set blist->b_cur to point to the item.
void *prevbitem(blist *blist);

Return a pointer to the data in blist->b_cur->prev; set blist->b_cur to point to the item.
void *lastbitem(blist *blist);

Return a pointer to the data in the last item in "blist"; set blist->b_cur to point to the item.

5.1.8 Draining a list (stack and FIFO)
vold *drainitem(blist *blist, int whence);

Return a pointer to the data in the item in "blist" specified by the whence flag. Set blist->b_cur to point to the
item. XXX

Values of whence are: BL_DRAIN_HEAD, BL_DRAIN_TAIL, BL_DRAIN_CUR

If blist->b_flags does not hav BL_LOCK set, the item is deleted on read. A static pointer is returned to the
data, and on the next call to drainitem(), if BL_ALLOC is set, the data to which it points is freed.

drainitem() can be used to implement a fifo or stack. For a fifo, insert at one end (head or tail) and read at the
other. For a stack, insert and read at the same end.

34

Stack

blist = newblist (NULL, (BL_ALLOC|BL_DESTR));
/* push */

additem(blist, data, size, BL_INSERT_HEAD);
/* pop */

data = drainitem(blist, BL_DRAIN_HEAD);

FIFO
blist = newblist (NULL, (BL_ALLOC|BL_DESTR));
/* push */
additem(blist, data, size, INSERT_HEAD);
/* pop */

data = drainitem(blist, BL_DRAIN_TAIL);

5.1.9 Sorting lists

int sortblist(blist *blist, int (*compf) (const void *, const void *));

Sort the list using compf to compare data. Uses gsort(). If doing really big lists, might change to mergesort.
Note that the comparison function recieves two blist **’s as parameters. A sample comparison function
where the data is strings might look like:

int
bl_strcmp (const void *s, const void *t);
{
bitem **sl;
bitem **tl1;
s = (const bitem **) sl;
t = (const bitem **) tl1;
return strcmp((*sl)->i_data, (*tl)->i_data);

5.2 Hash tables
5.2.1 Quick example

ht = hashnew (31, HT_REPL|HT_KALLOC, strlwr);
while (fgets(line, sizeof line, fr))

/* XXX [...] %/
hashfree (ht);

5.2.2 Creating a hash table
Hashtable *hashnew(int tablesize, int flags, char *(*fold) (char *key));

tablesize: number of elements in hash table. Best if a prime number.

flags: or'd combinations of:

HT_REPL unique, new replaces old

35

HT_KALLOC malloc space for key
HT_DALLOC malloc space for datum

fold: optional case folding function

If a folding function is specified, the hash library will run it on the passed key before hashing. Folding turns
on HT_KALLOC automatically, as the folded key must be stored for comparison on retrieval. "Hash" —>
"hash", "hash" must then be stored.

This means there is noticable overhead in case folding, as space must be allocated, and the key is first
copied to a buffer and then fold is run. The effect is exactly like:

ht = hashnew (31, HT_REPL, NULL);
n = strlen(key);
if (n > blen)
strcpy (buffer, key);
fold(buffer);
hashinsert (ht, buffer, datum, sizeof datum);

5.2.3 Freeing a hash table

void hashfree (Hashtable *htable);

Free hash table. Behaviour with regard to data and keys depends on HT_*ALLOC flags set. If hashinsert()
malloc’d space, hashfree() will free it.
5.2.4 Inserting into a hash table

int hashinsert (Hashtable *htable, char *key, void *datum, size_t datumsz);

Insert key/datum pair into hashtable. For space to be malloc'd for datum, HT_DALLOC must be specified (in
hashnew()); and datumsz must be > 0. Otherwise just the pointer *datum is stored.

If HT_REPL is not set, hashinsert() will return the defined value HT_DUPLICATEKEY if an attempt is
made to insert the same key twice, so you can check for this if it matters to you. htable->cur is set to point to
the inserted item. This is particularily useful if one wants to insert an item if not already there, otherwise wants
a pointer to the one that is there, saving the test hashget() followed by the hashinsert().

5.2.5 Deleting from a hash table
int hashdel (Hashtable *htable, char *key);

Delete the node specified by "key" from the hashtable. If space was allocated for the key or the datum, free that
as well as appropriate.

5.2.6 Looking up a key in a hash table

void *hashget (Hashtable *htable, char *key);

Return the datum associated with the key. XXX what about NULL datums, since we decided to support that?
XXX

36

5.2.7 Walk through the contents of a hash table

Hashnode *hashfirst (Hashtable *ht, Hashcursor *hc);
Hashnode *hashnext (Hashcursor *hc);

For example:

Hashcursor *hn;

Hashcursor hc;

for (hn = hashfirst (ht, &hc); hn; hn = hashnext (&hc)) {
[...]

5.2.8 Hash statistics and contents

void hashstats (FILE *fw, Hashtable *htable);
Print a little summary about the hash table and it’s statistics.

void hashprint (FILE *fw, Hashtable *htable,
void (*print) (FILE *fw, int slot, Hashnode *hp));

For each item in htable run (*print)().

void hashprintgraph(FILE *fw, int i, Hashnode *hp);

For above, print "." for item.
void hashprintvalues (FILE *fw, int i, Hashnode *hp);

For above, print key:datum pair for item.

5.3 2-3 Tree functions

The 2-3 tree routines provide a self-balancing search tree. This implementation allows the tree to be traversed in
either direction, from lowest to highest value, or vice versa. This implementation does not currently support the
deletion of single items.

5.3.1 Creating and adding to a tree

Add an item to the tree. If the tree does not exisbfcuris NULL) the tree is created. The TreeCursor structure
returned points to the (possibly new) root of the tree. If the key already exists in the tree, the tree is unchanged,
and the TreeCursaidcur if passed is set to point to it.

TreeCursor *treeadd(TreeCursor *rootcur, void *data,
int (*compf) (const void *, const void *), TreeCursor *oldcur);

Example:

37

5.3.2

5.3.3

char 1ine[1024];

char *cp;

TreeCursor *tree = NULL;
TreeCursor tc;

while (fgets(line, stdin, sizeof(line))) {
if ((cp = strchr(line, ’\n’)) != NULL)
*cp = "\0’;
tree = treeadd(tree, (void *)line, strcmp, &tc);
if (tc.data)

fprintf (stderr, "duplicate line: \"%s\"", line);

Deleting a tree

void freetree (TreeCursor *rootcur, int freedata);

Searching a tree

void *treeget (TreeCursor *rootcur, TreeCursor *cursor,
void *data, int (*comp) (const void *, const void *));

Example:

534

char *1;
1 = treeget (tree, NULL, "this is a string", strcmp);
if (1 != NULL)

printf ("match!: \"%s\"", 1);

Traversing a tree

void *treefirst (TreeCursor *rootcur, TreeCursor *treecur);
vold *treelast (TreeCursor *rootcur, TreeCursor *treecur);
vold *treenext (TreeCursor *treecur);

void *treeprev(TreeCursor *treecur);

Example:

char *1;

TreeCursor tc;

for (1 = treefirst(tree, &tc); 1; 1 = treenext(&tc)) {
printf ("$s\n", 1);

6 Utility Functions

6.1 Utility utility functions

Look in the environment for a variable that matches the extensifittnfme This is very simple-minded

char *ut_findapp(char *filename);

completely unused by Ix.)

38

. (And

char *ut_mkpath2file(char *path, char *file, char *ext);

Create a path from the components provided. The returned pointer points to allocated storage the caller should
later free().

int ut_checkpath (char *path);
Check that the provided path can be stat'd.
time_t ut_getmtime (char *path);
Get the last modification time for a file.
int ut_isdirectory(char *path);
Return 1 ifpathis a directory, 0 if not, -1 if it can’t be stat()'d.
int ut_aresamefile(char *filel, char *file2);

Return 1 iffilel andfile2 are in fact the same inode on the same device. Return 0 if they are different. Return -1
if either cannot be stat()'d.

void ut_nlerase (char *s);
Remove any trailing newline (\n’) at the end of striag
char *ut_eatw(char *s);

Eat (remove) any leading white spasés not changed, a pointer is returned to the first non-white space character.
NULL is returned if there are no-none white space characters.

char *ut_eatnw(char *s);
Return a pointer to the first white space character, or NULL if none encountered.
int ut_isempty(char *s);

Return 1 ifs does not contain any non-white space characters, 0 if the line is empty or only consists of white
space characters.

void ut_trimw(char *s);
Trim any trailing white space.
char *ut_getwtoken (char **bp);

Get a white-space separated toklepis set to point just past it, so that a further call to ui_getwtoken() will return
the next token.

char *ut_cfill (char *buf, size_t buflen, int npad, char cpad);

Returnbuf filled with npadnumber of charactergpad If npadis greater thetuflen buf is filled only tobuflen

39

int ut_strsubstr(char *p, char *s);
Return 1 if s occurs in p, -1 if not. Weird return values.
int ut_setstr(char **var, char *s);

Change the value pointed to brgr, to that pointed to byg. var must point to allocated (malloc'd) storage; it is
free()d.smay be NULL, in which casegar will be free()d and set to NULL

int ut_varonoff (int *var, char *s);

Set a variablear to 1 or 0 depending on the strisglf sis "yes" or "on",varis setto 1. Ifsis "no" or "off" then
sis set to 0. Returns 0 on success, -4ig none of the above strings.

char *ut_strlwr (char *s)

Return a pointer tg all lowercase. This altersin place.

6.2 10 functions

Stdio-like operations for blists, files, and pipes.

These routines provide a common interface for quite different structures. Accordingly, the behaviour may
vary depending on the underlying source or target of operations. For example, when the object is a list, an fputs
into the middle of the list causes new list items (lines) to be inserted, rather than previous data overwritten.

Lists are always read-write.

Lists (so far) do not respond to character by character writes: the minimum write granularity is the string.
However, they do keep a character pointer and can be read character by character as a stream.

I0 *ioopen(char *name, char *mode);

Open an IO structure and associate it with a file or a blist structure.

nameis the name of the file to open, the name to give a created list if the type of 1O is blist, or the command
torunifitis a pipe.

modeis the creation mode, including the 10 type, (modes are similar to fopen(); modes):

Flag Description
type is file

type is a linked list
type is a pipe
open for writing
open to append
open for reading

NOTE: A list is always effectively opened for both reading and writing.
int ioclose (IO *io);

Shutdown an io. If the output is a file, then close the file. If it is a blist, then decrement the reference count, and
if the reference count is now zero, unlock the list head and delete the blist. Free the 10 structure.

void ioflush (IO *io);

40

If the output is flushable, flush it.
I0 *iolist2io(blist *list);

Create an io structure, and attach an already existing list to it. The mode will be rw.
I0 *iofile2io(FILE *f, int type);

Create an io structure and associate an already open file with it. Type can be one of IO_FILE or IO_PIPE,
depending on the type of file stream represented by f.

FILE *i02file (IO *io);

The inverse of iofile2io(). io2file() tears down the io structure, and returns a FILE pointer. All io context is lost
and the io structure is free'd. If the io is a list type, io2file() will return NULL.

blist *io02blist (IO *io);

The inverse of iolist2io(). io2list() tears down the 10 structure, and returns a pointer to the underlying blist. All
IO context is lost and the 10 structure is free'd. The position of the blist cursor (b_cur) is unaltered, however. If
the 1O is a file type, io2list() will return NULL.

FILE *iogetfile (IO *io);

Simply return a pointer to the underlying FILE stream. Does not affect the 10O structure or context. iogetfile_m
is a macro version of this.

blist *iogetlist (IO *io);

Simply return a pointer to the underlying blist. Does not affect the 10 structure or context. iogetlist m is a macro
version of this.

char *iogets(char *buf, size_t len, IO *io);
Like fgets().

int iogetc (IO *io);
Like getc().

int ioungetc(int c, IO *io);

Like ungetc(). A limited number of characters are guaranteed. The blist ungetc guarantees 3, the file ungetc()
whatever the system ungetc(); guarantees. A call to a function that affects stream-positioning (ioseek, ioputs,
ioprintf); will cause the pushed characters for that stream to be discarded.

int ioprintf (IO *io, char *fmt, ...);
Like fprintf().
int ioputs(char *s, IO *io);

Like fputs().

41

int ioseek (IO *io, long offset, int whence);
NOT IMPLEMENTED.
long iotell (IO *io);
NOT IMPLEMENTED.
void iorewind (IO *io);
Like rewind().
void iocopy(char *buf, size_t len, IO *iosrc, IO *iotgt);
Copies iosrc to iotgt, using buf (buf needed because line oriented and don’t have a ioputc() yet).

int iogettoken(char *buf, size_t len, IO *io);
void ioeatw (IO *io);

For reading and parsing word lists, etc. We do do a lot of this.

6.3 Stdio-like functions for linked lists

Functions for using linked lists with for stdio-type calls. An interface layer for use by the 10 functions above.

#include "blist.h"
#include "listio.h"
typedef struct io_ioliststruct LIST;
struct io_ioliststruct {
blist *bl;
char *cp;
long offset;
int ur;
char ubuf([3];
bi

LIST *lopen(char *name, char *mode); /* fopen */
LIST *blopen(blist *bl); /* fdopen */
int 1lclose(LIST *list); /* fclose */
int 1flush(LIST *1list); /* fflush */
int listseek (LIST *list, long offset, int whence); /* fseek x/
long 1ltell (LIST *list); /* ftell */
void lrewind (LIST *list); /* rewind */
char *lgets(char *buf, size_t len, LIST *1list); /* fgets */
int lgetc(LIST *1list); /* getc */
int lungetc(int ¢, LIST *list); /* ungetc */

A file positioning call, or a write to this list will lose the pushed back characters.

int vlprintf (LIST *1list, char *fmt, va_list ap); /* viprintf */
int lputs(char *s, LIST *list); /* fputs */

42

6.4 Error functions

NOT COMPLETE, the eprint* functions are broken

Arrangement make little sense. Not expected to eprintf whatever into error_string, and then have to call
something else to get the string. Should be eformat(errnum, fmt, ...). errstr() should return error string, but string
should be loaded by errset().

or by app wrapper?:

Ixseterr(x) (Ixerrnum=(x); _error_string=Ix_strerr(x));

6.5 Ascii graphs

struct graphdesc *ag_descgraph (
int rows, int cols,
int 1m, int rm,
int tm, int bm,
char *framec,
char *title,
char *xlabel, char *ylabel);

Create a description for an ascii graph. The rows and cols parameters set the size of the display field. Margins
between the display field and the data field (Im, rm, tm, bm) are measured in from the edges. framec points to the
character set (string) used to draw the frame. If it is NULL, a default will be used. title and legend are optional
title and label strings. If non-NULL, they are plotted into the graph on a call to frame_graph(); along with the
rest of the frame. If margins are set to 0, default margin values will be used. These are 8 for the left margin, and 2
for the other three margins. This is to ensure there is room for the title, and for the scale and labels at bottom and
left. NOTE: that the margins passed to init_graph() are converted to column numbers in the graphdesc structure
returned. For example, a graph is created 75 columns wide, with rm passed as 2, the graph description structure
will have g_rmargin set to 73.

|<--edge of field--v v-—edge of field-->|
|- |-
\ title here

\ (DISPLAY FIELD (includes data field))

<—=1m-——>| | <-rm——>
| (DATA FIELD) |

* % % *

= O®o O 9 =

*kkkkxk

|
|
|
|
|
|
|
|
| | \
| | \
| | \
| | \
| | \
| | * \
| | \
| | \
| I)k kK
| | |
|

|

|

43

| |
| \ x label |
| |
|<--edge of field--" "-—-edge of field-->|
char **ag_allocgraph(struct graphdesc *gdesc);

Allocate and return a pointer to the character array for the display field.

void ag_setmaxmin (struct graphdesc *gdesc,
float xmax, float xmin, float ymax, float ymin);

Set the data maximum and minimum values. These are used for scaling.
void ag_plotframe (struct graphdesc *gdesc, char **graph);

Draw the frame of the graph described by gdesc in the array pointed to by graph. If gdesc->g_title and/or gdesc-
>g_label are non-NULL, insert them into the graph as well.

void ag_plottitle(struct graphdesc *gdesc, char **graph, char *s);
Plot the string s into graph as the graph’s title.

void ag_plotxlabel (struct graphdesc *gdesc, char **graph, char *s);
Plot the string s into graph as the graph’s x axis label.

void ag_plotxlabel (struct graphdesc *gdesc, char **graph, char *s);
Plot the string s into graph as the graph’s y-axis label.

void ag_plotsticks(struct graphdesc *gdesc, char **graph,
float xint, float yint);

Plot scaled ticks into the X and Y axies of graph at intervals xint and yint.

int ag_plotsxy(struct graphdesc *gdesc, char **graph,
float x, float y, char c);

Scale and plot the character c at x,y in the data field.
void ag_plotxy(char **graph, int x, int y, char c);
Plot the character c at x,y in the display field.
void ag_plothstr(char **graph, int x, int y, char *s, int len);
Plot horizontally at most len of string s at x,y in the display field.
void ag_plothcstr(char **graph, int xs, int xe, int y, char *s, int len);

Plot horizontally at most len of string s on row y in the display field, centred between columns xs and xe.

44

void ag_plotvstr(char **graph, int x, int y, char *s, int len);
Plot vertically at most len of string s at X,y in the display field. Plots from top down.
void ag_plotvcstr(char **graph, int xs, int xe, int y, char *s, int len);

Plot vertically at most len of string s in column x in the display field, centred between rows ys, and ye. Plots from
top down.

int ag_xscale(struct graphdesc *gdesc, float x);
Scale x to fit within the display field. Return column to plot x into.
int ag_yscale(struct graphdesc *gdesc, float y);
Scale y to fit within the display field. Return row to plot y into.
extern char *ag_framec;

Set of default characters used to draw graph frame.

45

Index
2-3 trees, 37
ascii graphs, 43

categories, 6
Classes, 6
comments
in-text, 5
context
categories, 22
items, 21
counters, 28
in-text, 4

error codes, 32

flags, setting and clearing, 14

formatting items, 23
forms
description, 5
freetree, 38
functions
introduction, 6

hash tables, 35

include files, 6

index
description, 5

|0 functions, 40

libraries

linking against, 6
linked lists, 33
list

lexical, 4
loading

classes, 20

lexical lists, 8

roots and forms, 14

stop lists, 14
Ix_changelistflags, 14
Ix_changetokenflags, 14
Ix_clearstops, 14
Ix_close, 29
Ix_closestream, 30
Ix_derefindextoken, 17
Ix_dereftoken, 17

46

IXx_dumpcontext, 23
Ix_dupestream, 30
Ix_firstcounter, 29
Ix_firstflaggedlex, 9
Ix_firstindex, 10
Ix_firstinode, 11
Ix_firstitem, 8
Ix_firstlex, 9
Ix_firstnsflaggedlex, 10
Ix_firstnsindex, 10
Ix_firstnslex, 10
Ix_firstnsoccur, 10
Ix_firstoccur, 10
Ix_firstrngitem, 9
Ix_firstroot, 11
Ix_flagfromlist, 14
Ix_flagnotfromlist, 14
Ix_flagoccurfromlist, 14
Ix_flagsfromstream, 31
Ix_free_counters, 29
Ix_freecontext, 21
Ix_getc, 30
Ix_getcatcontext, 22
Ix_getcategcontext, 22
Ix_getcontext, 21
Ix_getcounter, 29
Ix_getlexcontext, 21
Ix_gets, 30
Ix_gotoitemnum, 9
Ix_gotolexnum, 9
Ix_indextoken, 7
IX_init_counters, 29
Ix_inrange, 7
IX_inum, 7
Ix_ioflagfromlist, 14
IXx_iscomment, 7
Ix_iscounter, 7
Ix_islex, 7
Ix_islinefeed, 7
Ix_ismarker, 7
Ix_isomit, 7
Ix_ispunct, 7
Ix_isrange, 7
Ix_lastindex, 10
Ix_lastinode, 11
Ix_lastitem, 8

Ix_lastlex, 9
Ix_lastnsindex, 10
Ix_lastnslex, 10
Ix_lastrngitem, 9
Ix_lastroot, 11
Ix_lexfromstream, 31
Ix_[firstfromcontext, 22
Ix_listfromstream, 31
Ix_llenfromcontext, 23
Ix_Inextfromcontext, 22
IX_Inumfromcontext, 22
Ix_loadforms, 14
Ix_loadlistfromio, 8
Ix_loadnewlist, 8
Ix_loadstops, 14
Ix_makecounterrange, 29
IX_new_counter, 28
IXx_newcontext, 21
Ix_newlexlist, 8
IX_nextcatcontext, 22
IX_nextcontext, 22
IX_nextcounter, 29
Ix_nextflaggedlex, 9
Ix_nextindex, 10
Ix_nextinode, 11
IX_nextitem, 8
IXx_nextlex, 9
Ix_nextnsflaggedlex, 10
IXx_nextnsindex, 10
IX_nextnslex, 10
Ix_nextnsoccur, 10
Ix_nextoccur, 10
IX_nextrngitem, 9
IX_nextroot, 11
IX_num, 7

Ix_open, 29
Ix_openstream, 30
Ix_previndex, 10
IX_previnode, 11
Ix_previtem, 8
IX_previex, 9
Ix_prevnsindex, 10
Ix_prevnslex, 10
IX_prevrngitem, 9
Ix_prevroot, 11
IX_renumber, 14
Ix_reversestops, 14
Ix_rfirstfromcontext, 22
Ix_rlenfromcontext, 23

47

IXx_rnextfromcontext, 22
IX_rnumfromcontext, 22
Ix_seekstream, 30
Ix_setstream, 30
Ix_skiptocounter, 29
Ix_stopfromlist, 14
Ix_token, 7
Ix_trav_r_firstoccur, 13
Ix_trav_r_nextoccur, 13
Ix_travfirst, 13
Ix_travfirstflagged, 13
Ix_travfirstindex, 13
Ix_travfirstoccur, 13
Ix_travfirstoccurtoken, 13
Ix_travfree, 11
Ix_travgoto, 13
IX_travinit, 11
Ix_travlast, 13
Ix_travlastindex, 13
Ix_travnext, 13
Ix_travnextflagged, 13
Ix_travnextindex, 13
Ix_travnextoccur, 13
Ix_travprev, 13
Ix_travprevindex, 13
Ix_travsetup, 11
Ix_unflagall, 14
Ix_unloadlist, 8
Ixc_addcateg, 17
Ixc_addcategbyname, 17
Ixc_addclass, 17
Ixc_addmember, 18
Ixc_addmemberbyname, 18
Ixc_addsubcateg, 17
Ixc_addxcateg, 17
Ixc_bindclass, 18
Ixc_bindclassbyname, 18
Ixc_catfromlnode, 19
Ixc_delcateg, 17
Ixc_delcategbyname, 17
Ixc_delclass, 17
Ixc_dumpclasstoio, 20
Ixc_findcatinode, 18, 19
Ixc_findcatlex, 19
Ixc_findclass, 18
Ixc_firstwordforcat, 19
Ixc_firstwordforcateg, 19
Ixc_freecategs, 18
Ixc_freecatstack, 19

Ixc_lexfrominode, 19
Ixc_lexinodefrominode, 19
Ixc_loadclassfromio, 20
Ixc_mbrfrominode, 19
Ixc_newcatstack, 19
Ixc_nextcatforword, 20
Ixc_nextwordforcat, 19
Ixc_releaseclass, 18
Ixc_releaseclassbyname, 18
Ixc_releaseclasslexbyname, 18
Ixc_setcatstack, 19
Ixf_addform, 15
Ixf_addformbyinodes, 15
Ixf_addformbynames, 15
Ixf_addroot, 14
Ixf_delform, 15
Ixf_delforms, 15
Ixf_delroot, 15
Ixf_delrootandforms, 15
Ixf_dumpformstoio, 14
Ixf_firstassigned, 16
Ixf_firstform, 15
Ixf_firstformforroot, 15
Ixf_firstorphan, 16
Ixf_firstunassigned, 16
Ixf_isassignedform, 7
Ixf_isform, 7
Ixf_isorphan, 7
Ixf_isroot, 7
Ixf_isrootintext, 7
Ixf_isrootnotintext, 7
Ixf_isunassignedform, 7
Ixf_itemtorootword, 16
Ixf_loadformsfromio, 14
Ixf_nextassigned, 16
Ixf_nextform, 16
Ixf_nextorphan, 16
Ixf_nextunassigned, 16
Ixf_rootaslex, 15
Ixf_rootastoken, 15
Ixf_rootindexnode, 15
Ixf_tellform, 16
Ixf_wordtorootword, 16
Ixp_fillline, 25
Ixp_fmtitem, 25
Ixp_freeline, 25
Ixp_getlineend, 25
Ixp_getlineno, 25
Ixp_getlinestart, 25

48

Ixp_initline, 25
Ixp_lineenditem, 24
Ixp_lineno, 24
Ixp_linestartitem, 24
Ixp_nocomments, 24
IXp_nocounters, 24
Ixp_nomarkers, 24
IXp_noomit, 24
Ixp_noranges, 24
Ixp_resetline, 25
Ixp_setlineforitem, 25
Ixr_add_rangeset, 26
Ixr_adjust_range, 26

Ixr_append_by type member, 27

Ixr_append_rangeset, 26
Ixr_apply_range, 26
Ixr_check_ranges, 28
Ixr_clear_rangeset, 27
Ixr_default_mapping, 26
Ixr_del_rangeset, 27
Ixr_first_rangeset, 28
Ixr_first_rangeset of type, 28
Ixr_free_ranges, 27

Ixr_get rangeset, 28
Ixr_init_ranges, 27
Ixr_invert_mapping, 26
Ixr_makeitemrange, 28
Ixr_next_rangeset, 28
Ixr_next_rangeset_of_type, 28
Ixr_parserange, 27
Ixr_print_range, 28
Ixr_scan_to_rangeset, 27
Ixt_dereftoken, 17
Ixt_setderef, 16

markers
in-text, 4

ranges, 26
roots
description, 5

stops, setting, 14

treeadd, 37
treefirst, 38
treeget, 38

treelast, 38
treenext, 38
treeprev, 38

